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Higher-order boundary-layer solution for unsteady 
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(Received 6 May 1988 and in revised form 6 October 1989) 

The higher-order boundary-layer solution for an impulsively started circular cylinder 
with uniform velocity and for an exponentially accelerating cylinder in incom- 
pressible, relatively high-Reynolds-number flow of short duration are considered. A 
perturbation method is employed to linearize the two-dimensional vorticity 
transport equation by a double series expansion with respect to  the Reynolds 
number and the time. A matched asymptotic expansion is carried out to  define the 
proper boundary conditions between the viscous and inviscid layers for the linearized 
first-, second-, and third-order boundary-layer equations. Singularities appear in the 
higher-order approximate solutions to the viscous displacement velocities and skin 
frictions, which coincide with the singularity of the first-order approximate solution. 
These singularities have alternating signs and increasing magnitudes, thus 
attempting to remove the effects of the singularity of the lower-order solution. 
However, this futile attempt at removing a singularity by superposing even stronger 
singularities makes the solution worse around the singularity, which shows that the 
singularity is an artifact of the thin-boundary-layer approximation. 

1. Introduction 
Recently there have been many arguments on the existence and nature of a 

singularity in unsteady boundary-layer flow analogous to the Goldstein (1948) 
singularity in steady boundary-layer flow. 

After Blasius (1908) initially investigated the flow past an impulsively started 
circular cylinder as a function of time with a boundary-layer approximation, 
Goldstein & Rosenhead (1936), Wang (1967), Collins & Dennis (1973a, b ) ,  Telionis & 
Tsahalis (1974), Bar-Lev & Yang (1975), Cebeci (1979), Wang (1979), van Dommelen 
& Shen (1980), Cowley (1983), Ingham (1984), and recently Henkes & Veldman 
( 1987) have followed. Sears & Telionis ( 197 1 ), van Dommelen & Shen (1  980), Ingham 
(1984), and Henkes & Veldman (1987) have suggested some connection between the 
singularity and separation. After van Dommelen & Shen (1980) clearly showed that 
a singularity exists a t  r x 1.5, where r is a dimensionless time normalized by a/U,, 
i.e. radius/velocity of the cylinder, it  seems that the controversy over the existence 
of a singularity in the boundary-layer solution of unsteady flow had been put to rest. 
Cowley (1983) and Ingham (1984) both confirmed this result 

All the previous work done thus far regarding this unsteady flow singularity has 
been concerned only with the first-order boundary-layer approximation (or classical 
boundary-layer approximation). No information on the singularity of higher-order 
approximations is available yet. 

The higher-order approximation is closer to the full NavierStokes equations than 
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the first-order approximation. Hence if our expansion is physically sound, it should 
ease the singularity which we experience in the first-order solution. Otherwise it will 
reveal a similar behaviour to  the thin-airfoil expansion for the potential flow past an 
ellipse (Van Dyke 1975, p. 51). In  this example the thin-airfoil assumption has been 
violated around the stagnation point. In  response, the first-order solution yields a 
singularity a t  the stagnation point, then each following higher-order solution tries to 
compensate for the singularity caused by the previous approximation with a larger 
magnitude and an alternating sign ; in consequence the singularity is compounded in 
the higher approximation. If this happens in our higher-order solutions, we can 
identify that we have violated some physical grounds in our approximation. 

For this purpose, two models are used in this work: the flow past an impulsively 
started circular cylinder and the flow past an exponentially accelerating circular 
cylinder. The latter problem has been treated by Watson (1955) who obtained a 
three-term solution with respect to  time for the classical boundary-layer approxi- 
mation. Contrary to the impulsively started cylinder, which possesses an initial 
inherent singularity by its sudden movement, the exponentially moving cylinder 
does not have an discontinuity. It starts from rest very slowly at T --f - co and moves 
smoothly with a speed that increases exponentially with time. Therefore comparing 
the results of these two models will determine whether the singularity arises from the 
impulsive movement. 

For both cases, the approximation has been extended to third order with respect 
to Reynolds number Re, where Re = U m a / v ,  and a perturbation method has been 
employed to linearize the two-dimensional vorticity equation by a double series 
expansion with respect to Re and time. 

2. Impulsively started circular cylinder 
We consider the motion of a viscous, incompressible fluid around a circular 

cylinder of infinite length which suddenly starts to move with constant velocity 
perpendicular to its axis as shown in figure 1.  

The governing equation is the two-dimensional vorticity transport equation for 
the incompressible flow : 

where Y is the stream function, u = Yr, and 21 = - ( l /r )  Yo, with boundary conditions 

Y =  Y r = 0  a t  r = a ,  ( 2 . 2 ~ )  

Y=O at t = 0 ,  (2 .2b )  

Yr+U,sinO as r+co, t > 0 .  (2 .2c )  

After transforming coordinates into the usual boundary-layer coordinates in which 
y is normal to the surface and x is measured along the surface from the front 
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FIGURE 1. Flow past a circular cylinder 

stagnation point, and collecting terms which have the same order of magnitude, the 
governing equation (2.1) may be arranged as follows: 

V Y 
a2 a a2 

- Yxxt + 2u Yy,zx - - Y,, - Y,,, Y, - y, + Y,,, Yx + - YUt 

+O(S2). (2.3) 

In the boundary layer, we regard y and Y as of 0(6),  u of O(S2), and x and t as of0(1),  
where 6 is a boundary-layer thickness non-dimensionalized by a. The terms in square 
brackets in (2.3) are only of O(l/S), the terms in curly brackets are of 0(1), and the 
complete equation (2.3) contains O(8) terms ; consequently we call these first-order, 
second-order, and third-order approximations, respectively. Here approximations 
only up to third-order have been considered. 

2.1. First-order (classical) boundary-layer expansion 
In addition to Y ( x , O , t )  = Y,(x,O,t) = 0, two more boundary conditions should be 
supplied by the inner-outer-layer matching to solve the first-order approximation to 
(2.3) (i.e. that in square brackets). 

The basic inviscid approximation gives the first-order potential-flow solution 

where Y represents a stream function for the potential flow. We introduce the 
stretched coordinate variable 7 = y/2(ut) i ,  and the dimensionless time 7 = Urn t / a .  
Then (2.4) shows that Y may be expanded as 

* I  
where $, $, $ refer to the dimensionless stream function of the first-, second-, and 
third-order approximate solution, respectively. Here we have used an expansion 
parameter (ut)I/a. The solution is expanded first with respect to (ut)i /a according to 

1- FCM 214 
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each order of approximation, then each non-dimensional stream function is expanded 
with respect to dimensionless time. Here (vt)i/u is equivalent to (r/Re)i, where Re/r 
is the so-called unsteady Reynolds number. Since the boundary-layer thickness 
depends strongly on both Re and the elapsed time after the impulsive start of the 
body, the choice of these two expansion parameters seems quite proper. 

After following inner-outer matching procedures which are given by Van Dyke 
(1975, p. 90), we get 

F=  4(vt)tU, [7sine+o($)]. (2.6) 

From this first-order matching between (2.6) and (2.5) we get Y - 4(& U ,  7 sin 0 as 
7 +co, which gives the boundary condition Y, --f 2Um sin 0 as y +co. The integration 
of the first-order approximation to (2.3) with respect to  y combined with this 
matching condition and the zero velocity on the wall condition yields a simpler 
version of the first-order boundary-layer equation : 

The non-dimensionalization of (2.7) by using dimensionless stretched coordinates 
combined with (2.5) results in 

$,,, + 27$7,, - 4 ~ 6 ~  = ST($, $,, - JR, - sin e cos el. (2.8) 

We expand the dimensionless stream function with respect to  dimensionless time as 

(2.9) 

(2.10) 

since Y must satisfy the pressure term which is expressed in the last term in (2.7), 
and we also assume that the flow is symmetrical about the direction of motion of the 
cylinder until the solution breaks down. By substituting (2.9), (2.10) into (2.8), we can 
transform the partial differential equation to  the corresponding ordinary differential 
equations. After rearranging the nonlinear terms and equating the coefficients of 
each of the sin qe terms, (following Cowley 1983), i t  is found that if p + q is even then 
f p q  = 0, and that if p + q is odd then 

The double sums Sipq are given by 

p-1-q minU+l, p-j-q) 

C n(finfiq+n - f j n K q + n )  7 

n-1 
S2PQ = c 

5-0 

(2.12b) 

(2.12c) 
j - q  n - q f l  

where k = p - 1 - j, and the sums are zero if the upper index is less than the lower one. 
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The prime denotes differentiation with respect to q throughout present work. Also 
the boundary conditions (2.2a, b, c )  give 

( 2 . 1 3 ~ )  

f&-+ 1 ,  f h q + O  for all other p and q as q+m. (2.13 b )  

fpq(0) = fL,(O) = 0 for all p and q, 

The analytic solution of the first term is 

(2.14) 

which is same as the solution of the Stokes’ first problem for a flat plate set 
impulsively into motion. 

The quickly growing right-hand side of (2.11) forced us to use numerical means. 
We decided to adopt a finite-difference method to solve these equations. We limit our 
expansion to 51 dimensionless time terms, mainly because of the huge memory size 
requirement when we use a finite-difference method. This appears to be the minimum 
number of terms to deduce any worthwhile results according to Cowley (1983). Then 
the number of equations of the form of (2.11) which we have to solve for the first 
expansion is 676. Since we intended to go on to the third approximation, the total 
number of equations we need to solve by numerical means is 2028. 

Following Collins & Dennis (19734 ,  we developed an O(h4)-accuracy finite- 
difference method, where h is mesh size. By substituting Fpq = e ~ p ~ q ,  the general 
form of (2.11) becomes 

(2.15) F;q - (4p + 1 + q2)  Fpq = 4 en ( S I P ,  + S,,, - SSpq - alp) .  
Details of how to solve this equation with O(h4) accuracy are given by Fox (1957), 
Collins & Dennis ( 1 9 7 3 ~ )  and Cowley (1983). Though Fox’s method guarantees 
accuracy of O(h4),  we modified the program slightly using the technique of 
Richardson’s extrapolation to improve the accuracy of the program to O(ha), After 
obtaining numerical solutions of Fpq, we derived the stream function and vorticity 
function by numerical integration and numerical differentiation, respectively. 

A very fine mesh was required to get high precision in higher-order time terms in 
order to locate the singular point. We found that using h = 0.0125 gives an optimum 
trade-off size between truncation error and round-off error if we use an O(hE) method 
and double precision. Smaller mesh sizes actually yield more rapidly growing errors 
due to a round-off effect in our scheme. The problem contains a boundary condition 
at q +a, and we have chosen q = 10 as suitably large to enforce this condition in our 
numerical scheme. 

The computation was done on a Convex C-1 machine with vectorization option. 
The accuracy appeared to be deteriorating as the number of computations increases, 
however through the whole process the accuracy remained a t  an acceptable level. 

i a  

2.2. Second-order boundary-layer expansion 
After we obtain the non-dimensionalized second-order boundary-layer equation by 
inserting (2.5) into the second-order approximation to (2.3)’ i.e. the terms in curly 
brackets, we expand the second-order dimensionless stream function as 

(2.16) 

4-2 
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This gives the ODE’S for the second-order boundary-layer problem for p + q odd as 

s;;+2SrS;*--Pg;q = 4 ( - S r ~ q - f ; q + + P f ~ q ~ + 4 ( ~ l p * + ~ 2 p * - ~ , p q ) .  (2.17) 

The double sums Xipq are given by 
p-1 min0’+l,q-l) 

j = O  n=max(l, p+j-p) 
S l p q  = C C nV;n &q-n + gYnfLq-n - f in  d q - n  

- g  jn f’” kq-n + ‘(fj’nfLq-n - f jn f&-n)  + 2 ~ r ( f ~ n f ~ * - n - f ~ ~ f ~ q - n ) I ,  ( 2 . 1 8 ~ )  
p-1-q min(j+l,p-j-q) 

CI 
n=l 

- g  j n  f”’ kq+n +2(fj’nfLq+n -fjnfLq+n) + 2 r l ( f 3 n f ~ q + n - f ~ n ~ * + n ) I ~  (2.18b) 

nW;., d q + n  + $nfLq+n - f i n  &q+n S Z P ,  - C  - 
i-0 

p-1 min(j+l,p-j+q) 

j -q  n-q+l 
Sspq  = C 2 nlf;:, dn-q  +&fLn-q-fjn d’n-q 

-gjnf:n-q + 2(&nfAn-q -fjnf&-q) + s r ( f ~ n f ~ n - q - f ; n f L n - q ) l .  ( 2 . 1 8 ~ )  

In addition to gpq(0) = 0 and gaq(0)  = 0, two more sets of boundary conditions are 
provided by the matching conditions. 

The second-order outer-layer solution is determined from the first-order inner 
expansion. Then the second-order outer-layer solution gives the matching condition 
for the second-order inner solution. 

Rewriting the complete solution of the first-order boundary layer in outer 
variables and expanding for small (&/a yields 

This inner solution (2.19) determines the coefficients of the second-order potential- 
flow solution, which follows. 

The general solution of the second-order approximate potential flow is 

(2.20) 

Since the inner solution (2.19) shows that the second-order expansion in outer 
variables has an expression in terms of (vt); and 7, we assume the coefficient Cq to be 

m 

c, = 7 p  [(vt$apq], 
P-0 

(2.21) 

where apq is a constant, to satisfy dimensions. Rewriting the assumed solution with 
inner variables and expanding for small (ut)i/a, comparison between the inner and 
outer solutions determines the coefficients Cq as 

(2.22) 

Rewriting the second-order potential-flow solution in inner variables and expanding 
for small (vt)i/la shows that the matching conditions for the second-order boundary- 
layer solution are that as 7 +oo 

901 - - r 1 2 + 7 S r >  (2.23a) 

S p n  - 2 d p q ( 4 %  1 d P- (2.23b) 

2 
7c2 
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The analytic solution for the first term of the second-order boundary-layer equation 

(2.24) 
is 

which agrees with Wang (19671, Collins & Dennis ( 1 9 7 3 ~ ) .  Bar-Lev & Yang (1975) 
made a typographic error in their solution. 

Once again by adopting Gpq = en g i q ,  we transformed (2.17) to second-order 
ODE’s to get numerical solutions. We need to supply the value of g;,(O) as one of the 
boundary conditions to get the numerical solution. Since it is impossible to know this 
value in advance, the following scheme was conceived. First, we assume two different 
values for g; , (O) and carry out numerical computations with each of these two 
conditions. Then we calculate gbq( G O )  by numerical integration for each of these two 
solutions. Next we construct a linear combination of the two solutions that gives the 
correct gb,( co) obtained by the matching condition. The proper g;,(O) is formed from 
the linear combination above. 

2x3 

1 2  

2.3. Third-order boundary-layer expansion 

We expand the third-order dimensionless stream function as 

m P+l f = C 7Phpq(q) sin@, (2.25) 
p=o 9-1 

then the ODE’s for the third-order equations p + q odd are 

hl; + 27hFq - 2h;, - 4ph;, = 4[ - g;q- 79;q + g;, + 2P(g;q - 2!12fpq - 27f;g) 

+2q2(-fpq+7fkq+f,”q) + (2v2+ l ) f , ” q + 2 ~ f ~ q + ( S i p q + S 2 p q - S , p q ) ] .  (2.26) 

The double sums Sipq are given by 

p-1 min ( j + l ,  4-1) 

j-0 n=max(l,q+j-p) 
S1pq = C C n{fyn h&q-n + g;n gLq-n + h;nfLq-n - f jn  G‘q-n 
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The matching conditions for the third-order inner solution are 

h,, - 2 q t Y p q ? l - ( p . + l ) f p q ( c o ) g 2 1 ,  1 G P7 
where ypq is a constant which is defined by 

(2.28) 

(2.29) 

(2.30) 

Details of this matching procedure are given in Nam (1988). The analytic solution of 
the first time term of the third-order approximate equation is 

(2.31) 

which agrees with Dennis & Collins (1973a)), but differs from Bar-Lev & Yang (1975). 
Since the matching condition for the third-order solution shows that the second 

derivatives of the solution do not approach zero as q+co, we defined Hpq = 
e g  [h'hq- Khq( a)] to make H p q  vanish as g +a. 

As we go to higher approximations, the cost of numerical computation becomes 
large geometrically owing to the rapid increase of the right-hand sides of the 
equations. 

3. Exponentially accelerating circular cylinder 

increasing exponentially with time, according to 
We now suppose that the velocity of the cylinder is not a step function, but is 

Urn@) = Aect, (3.1) 

where A and c are constants having the dimensions of velocity and of inverse time. 
We adopt g = y / ( u / c ) i ,  and 7 = A/(acect). Also let 

and we follow the same procedure as that for the impulsively started case. 

3.1. First-order boundary-layer expansion 
The ordinary differential equations of the first-order boundary-layer approximation 
for p + q  odd are given as 

(3-3) 

The double sums Sip, are the same as given in (2.12a, b, c), and the boundary 
conditions are same as (2.13a, b) .  

J y q  - (1 + P ) f L ,  = - 8 0 ,  + ( S I P ,  + s z p q  - -S3pq  - 4 p ) .  

The analytic solutions of the first few terms are easily obtainable as 



Unsteady motion of a circular cylinder 97 

f23 = (272/3/2-d6)e-d37-(52/2/2-3)e-(d2f’)7+(-27-’5)e-27 2 

+ ( -  ‘27+ 4 2 )  e-d27+ ( -k2 +k- 4 2 / 2 )  e-7+ (-271/3/2+ 46+!+21/2). (3.7) 

However it soon becomes clear that continuing to obtain analytic solutions by hand 
is quite impractical owing to the rapid increase of the number of terms which are 
generated by the combination of previous terms. 

We found that the structure of the equations ensures that the solutions are 
exponentials multiplied by polynomials in T,I as in (3.7) which are generated by the 
combination of its predecessors. We first developed a program that finds the 
coefficient of each exponential function from the results of the right-hand side of 
(3.3). Then, since we could predict the patterns of all higher-order derivatives of the 
exponential function, we obtain the exact solution of each ODE by the method of 
undetermined coefficients. Special care should be taken whenever the particular 
solution obtained by this method happens to possess the same function as the 
homogeneous solution of that particular equation. 

3.2. Xecond- and third-order boundary-layer expansion 
The expressions for the ODE’S of the second- and third-order boundary-layer 
expansion are given in Nam (1988). 

The matching conditions for the second-order boundary-layer solution as 7 +co 
are 

901 -k2+7, (3 .8~)  

Qpq - - 5 ! f p q ( W 7 ,  1 G P. (3.8b) 

The analytic solutions of the first two time terms of the second-order boundary-layer 
equation are 

More analytic solutions of second-order boundary-layer problems were computed by 
the computer. 

We stopped using the computer for the third-order solution owing to the excessive 
amount of computing time required. The analytic solution of the first term of the 
third-order approximate equation is 

4. Results and discussion 
For the case of the impulsively started cylinder, we obtained numerical solutions 

of ODE’S with up to 51 terms with respect to time for each of the first three orders 
of approximation in Re. 

We found that our numerical solution retains from 11 to 3 significant figures at the 
51st term of the first-order, and from 9 to 2 significant figures for the second-order 
approximate solutions. However, the third-order solution is deteriorating rapidly 
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compared with that of the previous two. We accept the third-order solution only up 
to p = 28 which still retains between 6 and 2 significant figures. Collins & Dennis 
( 1 9 7 3 ~ )  give eight, seven, and six terms ofyiq(0), giq(0), and Uiq(0), respectively. Our 
result and theirs are in good agreement. Concerning the small discrepancy, we believe 
our results are more accurate than theirs since we use an O(hS) method compared with 
their O(h4)  method. 

We found the time when the wall shear first reverses a t  0 = x as 70 = 
0.321 919 888 409 based on the first-order solution. This agrees well with Hommel's 
(1983) 

The beauty of the case of an exponentially accelerating cylinder is that we can 
obtain as many analytic solutions as we desire. However, because of the rapidly 
increasing right-hand side of the ODE'S, we selected p = 14. For p = 14, f p q  is 
composed of about 1500 non-zero coefficients and gpq contains about 2000 non-zero 
coefficients. 

We checked several flow quantities in the second- and third-order solutions to 
investigate the nature of a singularity which appears in the classical unsteady 
boundary-layer solution. 

4.1. Viscous displacement velocity 
According to Cowley (1983), the so-called viscous displacement velocity is more 
sensitive to the presence of a singularity than any other of the flow quantities 
commonly referred to. We concentrate on the behaviour of the viscous displacement 
velocity of the higher-order approximate solutions around the singularity. 

Since we are dealing with successive approximations, we need to define v, 
according to each order of approximation. We define the viscous displacement 
velocity as 

where we denote the perturbation quantity (vt):/a by E and vlm,v2m,v3m are the 
first-, second-, and third-order viscous displacement velocity, respectively. We also 
define Yl, Yz, Y3, Yl, Y2, and Y3 as the first, second, and third order of the inner- 
and outer-layer stream functions, respectively. 

The first-order viscous displacement velocity vlm of the impulsively started 
cylinder flow is the radial velocity at the edge of the boundary layer of the first-order 
inner solution minus that of the outer solution, and we keep only the first-order term 
of this result as vlm. Expanding the outer solution in the inner variable and collecting 
terms of the same order of E results in 

= 0.32191985 and Cowley's (1983) 70 = 0.32191989. 

(4.1) v, = Vlm + EllZrn + E2v3m, 

Neglecting dimensional factors yields the following expression for vIm : 

The expressions for the second- and third-order viscous displacement velocity are 
m P+l  

acos 8- c ~ ~ [ g ~ , ( q )  + 2qqfpq( a)] q cosq8}, (4.4) 
p-19=2 

7-m p=1 q-2 
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FIQURE 2. The first-order viscous displacement velocity for the impulsively started cylinder: it is 
smooth at an early stage and rapidly increasing as 7 increases. The maximum, which is believed to 
be a symptom of singularity, moves to the left. The graph was drawn from a [24/25] Pad6 
approximant. 

Note that the O(E)  term vanished in the expression for vZw, and the O(s) and O(s2) 
terms disappeared in that for vaW owing to the second- and third-order approxi- 
mation, respectively. 

By an analogous procedure, we also find vlW and vZW for the exponentially 

(4.6) 

(4.7) 

accelerating cylinder as 

1 00 p+1 

p-14'2 

vlw = 7i cos8- c c 7 p f p Q ( ~ ) q c ~ ~ q e  , 

1 m p+1 

( 
vUgW = lim 7; a cos 8- x x ~ ~ ( q ~ , ( q )  + 2qqfpQ( 03)) q cos q8 , 

where we denote ( v / c ) i  by s. We have used the [24/25] Pad6 approximant to draw 
graphs for the first- and second-order solutions of the impulsively started cylbder, 
and the [13/14] Pad6 approximant for the third-order solution. Without using Pad6 
approximants, we could not draw meaningful graphs as time is increasing. 

The singularity that appears in the viscous displacement velocity of the first-order 
solution agrees well with that of van Dommelen & Shen (1980), Cowley (1983), and 
Ingham (1984). They show that the singularity of the classical boundary-layer 
solution is located near 8 x 111' at T x 1.5. 

Figure 2 shows that the first-order viscous displacement velocity grows rapidly as 
7 approaches 1.5. The locations of the maxima suggest a singularity a t  less than 
0 = 115". The Pad6 approximants reveal the location of the singularity between 110" 
and 1 1 2 O .  We take the singularity to be located at B x 1 1 1 O  as van Dommelen & 
Shen (1980), Cowley (1983), and Ingham (1984) claim. The Pad6 approximants from 

tl+w r p=l Q=2 
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FIGURE 3. The zeros (0) and poles (A) in the complex domain of the [24/25] Pad6 approximant 
to the first-order viscous displacement velocity for the impulsively started cylinder : the nearest 
singularity on the real axis is 1.494 when 0 is fixed as 111'. 

[19/20] to [24/25] with the fixed angle a t  11 1" show that the real poles gather around 
1.494. This indicates that the location of the nearest singularity on the real axis at 
8 = 111" is 7 x 1.494. Figure 3 shows poles and zeros of the [24/25] Pad6 approxi- 
mant in the complex domain. 

Figure 4 shows that the second-order viscous displacement velocity has a similar 
singular behaviour to that of the first-order solution but with opposite sign and 
bigger magnitude. The Pad6 approximants for the second-order solution show that 
the location of the singularity is near 8 = 1 1  1" with even less error range than that 
of the first one. The Pad6 approximants from [19/20] to [24/25] of the second-order 
solution indicate that the location of the nearest singularity on the real axis at  
8 = 111" is T x 1.39. 

For the third-order solution, we do not have enough terms to give a reliable 
quantitative result and so figure 5 is only qualitative. However, it suggests that the 
behaviour of the third-order viscous displacement velocity is opposite to that of the 
second-order but with bigger magnitude. 

Another interesting point that we can draw from these three viscous displacement 
velocity components is that at each order the series for the viscous displacement 
velocity has the same repeated sign pattern of period 14. For a fixed angle, say 6' = 
111", we have done a series solution of 51 terms for the first- and second-, and 29 
terms for the third-order approximation with respect to time. The coefficients of the 
first-order solution develop a sign pattern of - - + + - - - + + - - + + + 
beginning with the fourteenth term. The second-order solution shows the same 
pattern starting from the sixteenth term. The third-order solution shows the same 
pattern starting from the fourteenth term. According to Li (1982), this sign pattern 
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FIGURE 4. The second-order displacement velocity for the impulsively started cylinder : this 
suggests that the singularity is located left of B % 115' as 7 approaches 1.5. 
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FIGURE 5 .  The third-order viscous displacement velocity for the impulsively started cylinder : it 
grows fast as time progresses. The magnitude is much greater than that of the second-order 
solution but with opposite sign. 
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FIGURE 6. The first-order viscous displacement velocity for the exponentially accelerating cylinder : 
it  starts to show a breakdown of the smooth curve and rapid increase of magnitude around 6 x 
138" as time progresses. This suggests the possibility of a singularity which may be located at  the 
left of 6 z 138" and a t  T > 1.5. 

indicates that the nearest singularities are a conjugate pair located a t  angles f 3x/7 
from the positive axis in the complex plane. The Pad6 approximants from [19/20] to 
[24/25] of the first-order viscous displacement velocity show that the nearest 
singularities lie a t  about 0.188f0.790i, which corresponds to angles of +2.987~/7. 
Figure 3 shows that this is the angle to  the nearest pole. This result agrees quite well 
with the expected value f 37c/7. The nearest singularity from the second-order 
viscous displacement velocity coincides even better with the expected value. It is 
about 0.181,0.790i, which corresponds to angles of +3.001~/7 in the complex plane. 
While this agreement between sign patterns and nearest singular points is reassuring, 
it cannot be of much help in improving a series solution unless the nearest singular 
point is located on the real axis. 

We have obtained 15 terms of the expansion in powers of time up to the second- 
order approximation for the exponentially accelerative cylinder. This number of 
terms is probably not sufficient to quantify any result with confidence. However, it 
seems to be adequate to give the character of the viscous displacement velocity in a 
qualitative sense. 

Though this flow does not involve singular movements either a t  the initial stage 
or thereafter, the behaviour of its viscous displacement velocity is very similar to 
that of impulsive movement which is inherently singular a t  the initial stage. 

Figure 6 shows that the maximum viscous displacement velocity, which may be a 
symptom of a singularity, builds up around 8 z 137", and the maximum moves to 
the left as time progresses, as for the impulsively started cylinder. The second-order 
viscous displacement velocity in figure 7 also shows the same pattern of growing 
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FIGURE 7. The second-order viscous displacement velocity for the exponentially accelerating 
cylinder : it shows a growing magnitude with opposite sign compared with the first-order viscous 
displacement velocity. It also shows that the second-order viscous displacement velocity grows 
rapidly a t  the same place as the first-order one. 

magnitude with opposite sign to that of the first-order viscous displacement velocity, 
as i t  did in the case of the impulsively started cylinder. 

4.2. S k i n  friction S, along the wall of the cylinder 
Though there is as yet no clear consensus on a definition of unsteady separation, and 
the skin friction is not as sensitive an indicator of any singularity as either viscous 
displacement velocity or viscous displacement thickness, skin-friction data should be 
included for the sake of completeness. The shear force along a surface is computed 

Expressing u in terms of the stream function of the impulsively started cylinder flow 

We define the non-dimensional shear force at each order of approximation as 

p = o  q-1 

(4.10) 

(4.11) 
p-0 q-I 

(4.12) 
p-0 q=1 
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FIQURE 8. The first-order skin friction for the impulsively started cylinder: a breakdown of the 
smooth curve starts to appear at T x 1.4 around 8 x 120". 
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FIGURE 9. The second-order skin friction for the impulsively started cylinder : rapidly increasing 
second-order skin friction shows that the maximum moves to the left of 6' % 120 as time increases. 
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FIGURE 10. The third-order skin friction for the impulsively started cylinder: it rapidly increases 
as time increases. The minimum moves to the left of 8 x 120 and magnitude grows fast with an 
opposite sign. 

where the subscript 1, 2, 3 corresponds to each order of approximation. The same 
definitions are used for the exponentially accelerating cylinder. 

We have used [24/25] Pad6 approximants to plot S,,, and Sfz, and used a [13/14] 
approximant for S,, for the impulsively started cylinder. 

The graph of S,, indicates some abnormality as T 2 1.4, see figure 8. Sf2, which is 
shown in figure 9, confirms the tendency that we observed for the viscous 
displacement velocity. The singularity seems to develop in the same place but with 
bigger amplitude and with an opposite sign. S,, in figure 10 also seems to lead to the 
same conclusion. We do not have enough terms to draw any meaningful plot beyond 
7 = 0.8, but the point of singularity seems to move left of r9 x 120" as time increases. 

For the exponentially accelerating cylinder S,, has an opposite sign and bigger 
magnitude than Sf,. 

4.3. Pressure distribution along the wall 
In the classical boundary-layer approximation, the pressure distribution is given by 
the first-order potential-flow pressure distribution, which leads to the Goldstein 
singularity in the steady-flow solution. Our solution, which uses successive 
approximations, has corrections for the pressure according to each order of 
approximation. The pressure distribution in the higher-order solutions will show 
adjustments to the effects of viscosity, vorticity, etc. calculated by the lower-order 
solutions. 

We non-dimensionalize the pressure with 1/2pP,. We expand dimensionless p as 

(4.13) p = p ,  + Ep, + 2 p ,  f . .. f 
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Since the third-order solution does not have a sufficient number of terms, we check 
only p ,  and p ,  terms. 

After transforming the cylindrical coordinates to boundary-layer stretched 
coordinates, the Navier-Stokes equation gives 

(4.15) 

Equation (4.15) shows that the pressure gradient in the r-direction is zero for the 
first-order solution, which is the classical boundary-layer assumption. However it is 
no longer zero for the higher-order solutions. 

The derivatives of the pressure distribution along the surface from (4.14) are 

and 7)  

Though the stagnation pressure is a function of both time and Re, we set the 
dimensionless pressure at the stagnation point be 1 as a reference point to compare 
with the pressure along the surface. We obtain the first-order pressure distribution 

(4.18) 
along the surface as 

which is simply the first-order potential-flow pressure distribution. 
Through the inner- and outer-layer matching process, the second-order outer-layer 

contains O(e) correction terms which are the result of the viscous effect in the first- 
order boundary-layer solution. The first correction in the pressure distribution along 
the surface is given from (4.17) as 

p ,  = 2cos28-1, 

(4.19) p ,  = CI E: - 7 P - 1 [ 2 f ; , ( 0 )  + g;q(0)]  - cos @+ constant, 

where the constant ensures that p ,  becomes zero at the front stagnation point. Figure 
i 1 shows the second-order pressure distribution a t  different times. The pressure 
along the surface also shows the same behaviour as we have seen for the viscous 
displacement velocity and skin friction. The rapidly increasing pressure around the 
singularity reveals that  the boundary-layer assumptions break down around there. 

4.4. Conclusion 

Two flows have been considered: one past an impulsively started cylinder and the 
other past an exponentially accelerating cylinder. 

Though the appearance of the singularity in the exponentially accelerating flow 
was suppressed a little longer than that of the impulsively started flow, owing to  slow 

1 

p-0 q-1 q 

00 p f l  
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FIGURE 1 1 .  The second-order pressure distribution along the surface : rapidly increasing pressure 
as 7 2 1.3 reveals that the singularity is imminent and the boundary-layer assumptions certainly 
break down around that point. 

107 

4 

4 

-0.2 I I I I 

log ( I  S-7)  

FIGURE 12. The log-log plot of max (qm) us. (7,-7), where 7, refers to the time at which the 
singularity take place taken as 1.5. The slope near the singularity seems to be -;, and 0.8 < 7 < 
1.3. 
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FIQURE 13. The log-log plot of max (u2,) us. ( T ~ - 7 ) .  The slope near the singularity seems to be -:, 
and 0.8 < 7 < 1.2. 

start of the flow, the behaviour of the viscous displacement velocities in both flows 
is very similar. This similarity excludes the possibility of the singularity being 
induced by the impulsive movement, which is singular by its nature. 

The evidence from viscous displacement velocity, skin friction, and pressure 
distribution that we have gathered shows that the singularity effect is compounded 
in higher approximations. Figure 12 shows that the maximum vlm grows like 
(7, - 7)-: near the singularity, where 7, refers to the dimensionless time at  which the 
singularity takes place. The result confirms that of Cowley (1983) and Ingham 
(1984). Figure 13 shows that the maximum v2, grows like (7, -T)-; from a quite early 
time to near the singularity. This reveals that vZm grows like 

vzm - -v2 1 m )  (4.20) 

around the singularity. Figure 14 suggests that  the maximum of v3* might grow like 
(7,-7)-?. However, this is inconclusive owing to the lack of sufficient terms to 
deduce a reliable result. 

The apparent location of the nearest singularity on the real axis for the second- 
order impulsively started cylinder solution is a little different from that of the first- 
order one: 1.39 us. 1.494. However the nearest singularities on the real axis from 
[19/20] to  [24/25] Pad6 approximants for the second-order solution show that the 
radius of convergence is increasing as the degree of approximant increases. This 
confirms our belief that if we could use more coefficients in the Pad6 approximants, 
exactly the same value of 7 would result for both cases. 

The analysis shows that the singularities in the higher-order approximation have 
alternating signs and increasing magnitudes, thereby attempting to remove the 
effects of the singularity of the lower-order approximate solution. However this 
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FIQURE 14. The log-log plot of max (vQm) vs. (7,-7) : The slope near the singularity seems to be -?, 
and 0.2 < 7 < 0.7. Since we do not have enough terms of the solution to predict the behaviour of 
vQm near the singularity with reasonable accuracy, this value is inconclusive. 

desperate attempt a t  removing a singularity by superposing even stronger 
singularities with alternating signs makes the solution worse around the singular 
point. 

Since the Navier-Stokes equations should not yield any Singularity, it is obvious 
that i t  has been introduced by transforming (2.1) into (2.3) based on the thin- 
boundary-layer assumption. Therefore the compounding singularity in the higher- 
order solutions reveals the limitation of the boundary-layer approximation. In this 
sense, the appearance of a singularity could be a strong indication of the imminent 
separation. 
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